Refine Your Search

Search Results

Technical Paper

Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles

2000-03-06
2000-01-1249
A production six-hole conical sac-type nozzle incorporating a quartz window in one of the injection holes has been used in order to visualize the flow under cavitating flow conditions. Simultaneous variation of both the injection and the back chamber pressures allowed images to be obtained at various cavitation and Reynolds numbers for two different fixed needle lifts corresponding to the first- and the second-stage lift of two-stage injectors. The flow visualization system was based on a fast and high resolution CCD camera equipped with high magnification lenses which allowed details of the various flow regimes formed inside the injection hole to be identified. From the obtained images both hole cavitation initiated at the top inlet corner of the hole as well as string cavitation formed inside the sac volume and entering into the hole from the bottom corner, were identified to occur at different cavitation and Reynolds numbers.
Technical Paper

Cavitation Initiation, Its Development and Link with Flow Turbulence in Diesel Injector Nozzles

2002-03-04
2002-01-0214
The initiation and development of cavitation in enlarged transparent acrylic models of six-hole nozzles for direct injection Diesel engines has been visualised by a high-speed digital video camera in a purpose-built refractive index matching test rig. The obtained high temporal resolution images have allowed improved understanding of the origin of the cavitation structures in Diesel injector nozzles and clarification of the effect of sac geometry (conical mini-sac vs. VCO) on cavitation initiation and development in the nozzle holes. The link between cavitation and flow turbulence in the sac volume and, more importantly, in the injection holes has been quantified through measurements of the flow by laser Doppler velocimetry (LDV) at a number of planes as a function of the Reynolds and cavitation numbers.
Technical Paper

Application of a FIE Computer Model to an In-Line Pump-Based Injection System for Diesel Engines

1997-02-24
970348
A computer model simulating the flow in fuel injection systems has been used in order to investigate the fuel injection processes in an in-line pump-based fuel injection system for direct-injection diesel engines. The model is one-dimensional and it is based on the mass and momentum conservation equations for the simulation of the fuel flow and on the equilibrium of forces for the simulation of the mechanical movements of the valves present in the system. The fuel injection system tested comprised an in-line pump whose characteristics were examined by using as input the measured line pressure signal and by modeling the pump operation itself as well as the fuel flow through single- and two-stage injectors. For the validation of the model, extensive comparison with experimental data has been performed for a wide range of pump operating conditions.
Technical Paper

Analysis of the Flow in the Nozzle of a Vertical Multi-Hole Diesel Engine Injector

1998-02-23
980811
An enlarged transparent model of a six-hole vertical diesel injector has been manufactured in order to allow flow measurements inside the sac volume and the injection holes to be obtained using a combination of laser Doppler velocimetry (LDV) and the refractive index matching technique under steady state conditions. The measurement points were concentrated in the sac volume close to the entrance of the injection holes as well as inside them on a vertical plane passing through the axis of two injection holes for two different needle lifts. The velocity flow field was characterized in terms of the mean velocity and the turbulent intensity. The results revealed that, under certain conditions, cavitation may occur in the recirculation zone formed at the entrance to the hole since the pressure in this region can reach the value of the vapor pressure of the flowing liquid; this was found to strongly depend on the needle lift and eccentricity.
Technical Paper

Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods

1993-03-01
930921
The injection rate signals from a commercial diesel fuel injection system, based on a distributor pump driven by a DC motor, were characterised independently and consecutively by two injection rate meters based on the Zeuch and Bosch methods. The signals were first analysed in terms of their shot-to-shot variations over 64 consecutive injections and the correlations between needle lift and injection rate over a range of pump speeds and loads quantified by Fast Fourier Transform. A direct comparison of the injection rate signals on a cycle-resolved basis was achieved by connecting two consecutive injectors from the pump-line-nozzle injection system to a Bosch- and a Zeuch-based injection rate meters. The signals were acquired over a large number of injections in terms of mean and rms of the injected quantity, mean injection rate, maximum injection rate, average cumulative fuel injected and average injection duration.
X